

Ceram•**optec**[®]

Innovative Fiber Optics
Every Step of the Way™

04	A full range of services for your needs	18	Safety Fiber
05	All-silica preforms by POVD and PCVD methods	20	Jackets for Silica Fiber Each application requires its own jacket
06	Fiber overview	21	Metal Coated Silica Fibers All-silica with metal coating
07	Optran® WF, Optran® WFNS All-silica with low OH	23	Fibers probes Customized medical fibers
08	Optran® UV, Optran® UVNS All-silica with high OH	24	Fiber cables Single-fiber assemblies
09	Optran® UVNSS All-silica stabilized with high OH	25	Fiber bundles Multi-fiber assemblies
10	Optran® UVWFS broadband fiber All-silica with low OH without Cl ₂	26	Fiber bundles Fused-end bundles
11	Optran® HUV, Optran® HWF Silica fiber with F-acrylate cladding	27	Fiber bundles Overview
12	Optran® PUV, Optran® PWF Silica fiber with silicone cladding	28	Our glossary
13	Optran® WFGE All-silica GeO ₂ doped	29	Comparison of attenuation values
14	Fiber taper products Optran® UV, WF, WFGE	31	Instructions for use
15	Multi-Core Optical Fiber Silica fibers – concentric or individual cores		
16	Optran® UVNCC, Optran® WFNCC All-silica with non circular cores		

A full range of services for your needs

Customized solutions from individual fibers to ready-to-use cable assemblies

With over 35 years' experience in the development and production of optical fibers and assemblies, we are a trusted partner for industry, medical and research. We develop our precision-made solutions in-house, from preform manufacturing to customized cables and bundles as well as medical fibers and probes. This allows us to provide you with effective, expert support and meet your individual requirements efficiently. We offer a one-stop solution for all your fiber optics needs. Many prestigious clients rely on our products. We hope that this brochure will provide you with a sound basis for your decision, and we would be delighted to tell you more about our products and processes in person.

Your advantages

- More than 500 fibers with different core sizes and geometries as well as jackets available from stock
- Customized fiber geometries and shapes (square, rectangular, x-gonal)
- One-stop shop (including AR-coatings of fiber ends and sterilization of medical fibers and probes)
- ISO 9001 14001, 13485 certified manufacturing
- Application optimized fiber properties (esp. high NA or solarization resistant)
- Large portfolio of fiber jackets (material, color and marking)

From initial enquiry to the finished product

ENQUIRY

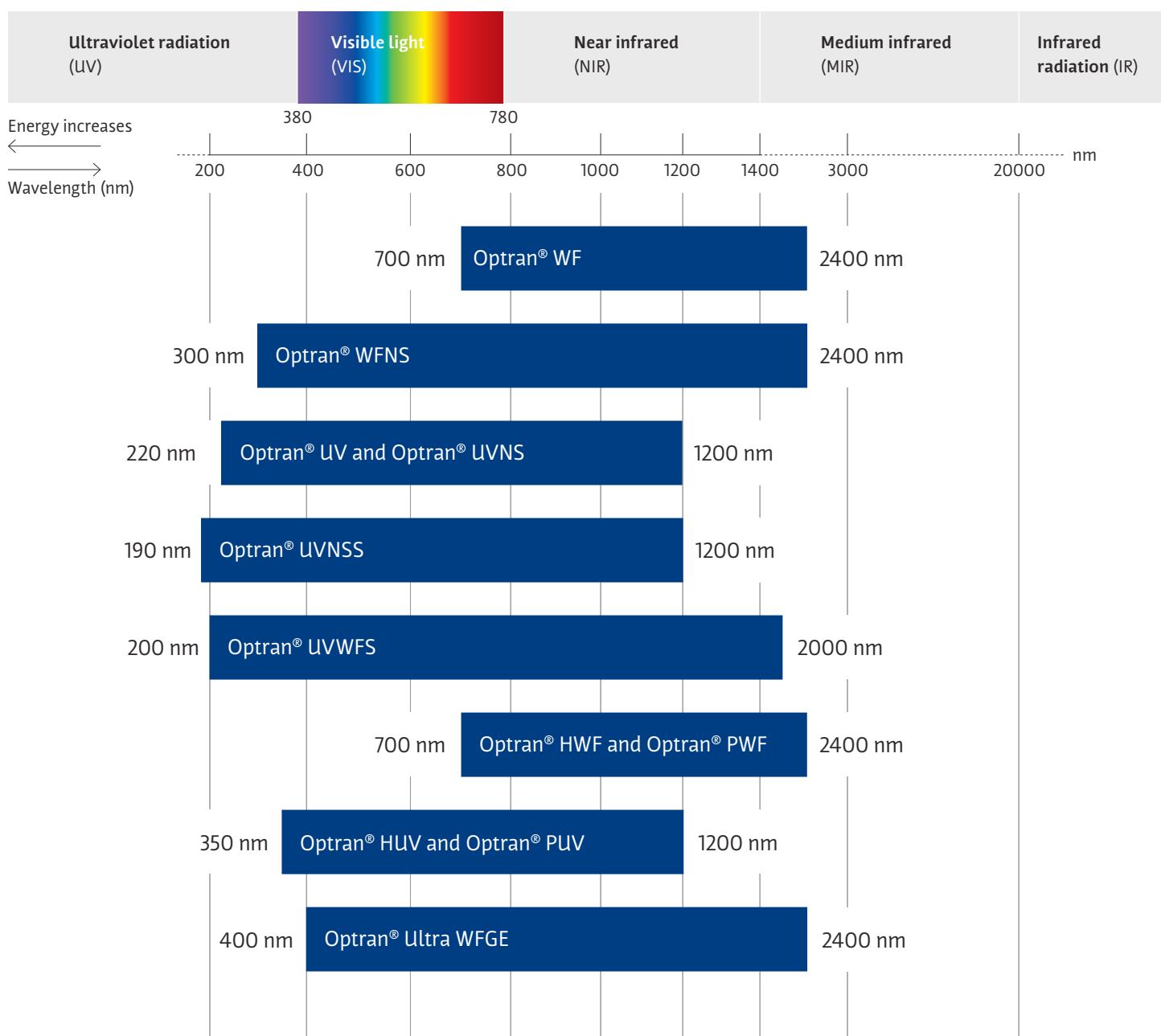
TECHNICAL
DEVELOPMENT

PROTOTYPING

PRODUCTION

All-silica preforms by POVD and PCVD methods

As one of the few suppliers on the market, CeramOptec® covers the entire manufacturing chain from the preform to full fiber assembly. The preform largely defines both optical properties and the geometry of the all-silica fiber drawn from it.


CeramOptec® utilizes POVD and PCVD plasma technologies for the deposition of fluorine doped silica layers on a core material. We achieve a Numerical Aperture between the deposited material and pure silica core of 0.28. The fibers drawn from POVD and PCVD preforms have different characteristics. The use of two different deposition technologies for the production of preforms opens up a wide range of technical options and enables us to manufacture particularly demanding special shapes.

Fiber overview

Choose the right one

Different types of optical fibers are used at different wavelengths depending on their transmission properties.

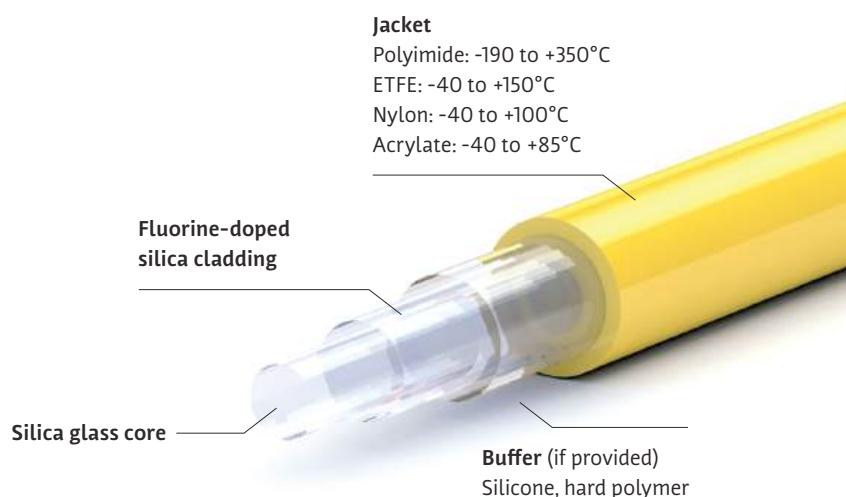
Optran® WF, Optran® WFNS

All-silica with low OH

Standard fibers for NIR

Spectroscopy, medical diagnostic, medical technology, laser delivery systems, low power astronomy applications, etc.

- Superior performance and fiber optic properties in NIR range
- Optran® WFNS expands wavelength range down to UV
- Available in a wide range of core diameters and assemblies
- Tailored to your specific application needs


Standard NIR

Wavelength

Optran® WF	700–2400 nm
Optran® WFNS	300–2400 nm

Numerical aperture (NA)

Low	0.12 ± 0.02
Standard	0.22 ± 0.02
High	0.28 ± 0.02

Technical data

Wavelength / spectral range	Optran® WF: 700–2400 nm Optran® WFNS: 300–2400 nm
Numerical aperture (NA)	0.12 ± 0.02 0.22 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-190 to +350°C
Core diameter	Available from 30 to 3000 µm
Standard core / cladding ratios	1:1.04 1:1.06 1:1.1 1:1.15 1:1.2 1:1.25 1:1.4 or customized
OH content	Optran® WF, Optran® WFNS: low (< 1 ppm) Fibers with OH contents < 0.25 ppm are available upon request
Standard prooftest	100 kpsi (nylon, ETFE, acrylate jacket) 70 kpsi (polyimide jacket)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Product code	See glossary, p. 28
Attenuation values	in relation to wavelength: see p. 29

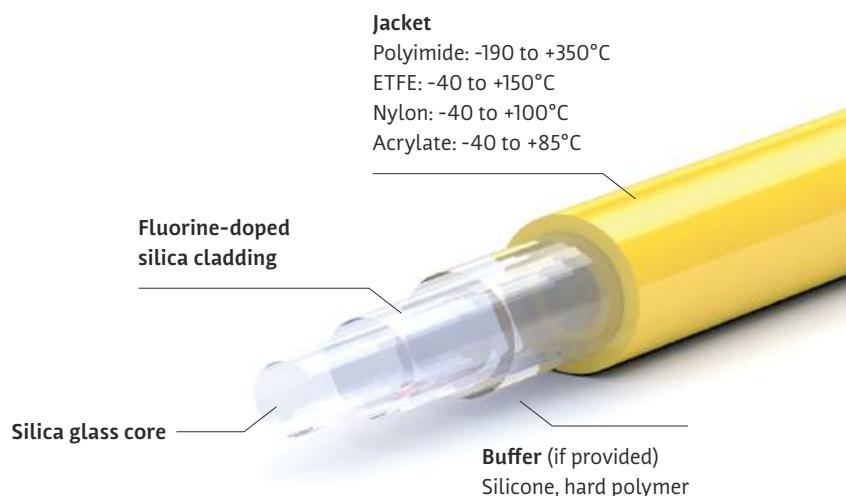
Optran® UV, Optran® UVNS

All-silica with high OH

Standard fibers for UV-VIS wavelength range

Spectroscopy, medical diagnostic, medical technology, laser delivery systems etc.

- Superior performance and fiber optic properties from UV to IR wavelengths
- Optran UVNS has an excellent solarization resistant at higher UV power levels
- Available in a wide range of core diameters and assemblies
- Tailored to your specific application needs


Standard UV

Wavelength

Optran® UV	220–1200 nm
Optran® UVNS	190–1200 nm

Numerical aperture (NA)

Low	0.12 ± 0.02
Standard	0.22 ± 0.02
High	0.28 ± 0.02

Technical data

Wavelength / spectral range	Optran® UV, Optran® UVNS: 220–1200 nm
Numerical aperture (NA)	0.12 ± 0.02 0.22 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-190 to +350°C
Core diameter	Available from 50 to 3000 µm
Standard core / cladding ratios	1:1.04 1:1.06 1:1.1 1:1.15 1:1.2 1:1.25 1:1.4 or customized
OH content	Optran® UV: high (> 700 ppm)
Standard prooftest	100 kpsi (nylon, ETFE, acrylate jacket) 70 kpsi (polyimide jacket)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Product code	See glossary, p. 28
Attenuation values	in relation to wavelength: see p. 29

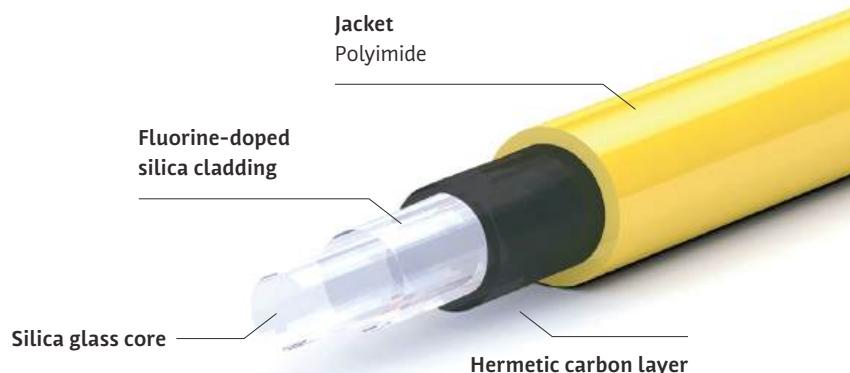
Optran® UVNSS

All-silica stabilized with high OH

UV-fibers with improved solarization resistance and extra stability

Spectroscopy, semiconductor technology, laser delivery systems and other applications.

- Superior performance and fiber optic properties especially in the deeper UV and higher power levels
- Extremely high solarization resistance
- Available in a wide range of core diameters and assemblies
- Tailored to your specific application needs


High solarization resistance

Wavelength

Optran® UVNSS 190–1200 nm

Numerical aperture (NA)

Low	0.12 ± 0.02
Standard	0.22 ± 0.02
High	0.28 ± 0.02

Technical data

Wavelength / spectral range	Optran® UVNSS: 190–1200 nm
Numerical aperture (NA)	0.12 ± 0.02 0.22 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-190 to +150°C
Core diameter	Available from 100 to 600 µm
Standard core / cladding ratios	1:1.06 1:1.1 1:1.2 1:1.4 or customized
OH content	High (> 700 ppm)
Standard prooftest	70 kpsi (polyimide jacket)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 300 × core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 29

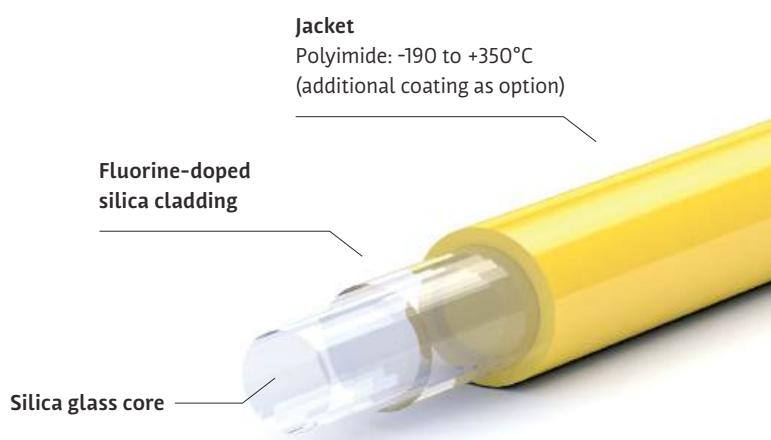
Optran® UVWFS broadband fiber

All-silica with low OH and without Cl₂

Ultra broadband fiber for the 200 nm to 2000 nm

Spectroscopy, analytical instruments, sensing applications, astronomy, aerospace and avionics, defense and wherever different wavelengths are used simultaneously.

- Superior performance and fiber optic properties from deeper UV to NIR
- Available in a wide range of core diameters and assemblies
- Tailored to your specific application needs


Broadband

Wavelength

Optran® UVWFS 200–2000 nm

Numerical aperture (NA)

Low	0.12 ± 0.02
Standard	0.22 ± 0.02
High	0.28 ± 0.02

Technical data

Wavelength / spectral range	Optran® UVWFS: 200–2000 nm
Numerical aperture (NA)	0.12 ± 0.02 0.22 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-190 to +350°C
Core diameter	Available from 100 to 800 µm standard 200 µm
OH content	Optran® UVWFS: ~ 5 ppm
Standard core / cladding ratios	1:1.06 1:1.1 1:1.2 1:1.4 or customized
Standard prooftest	70 kpsi (polyimide jacket)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 30

Optran® HUV, Optran® HWF

Silica fiber with F-acrylate cladding

Cost-effective silica fiber with a high numerical aperture

Illumination, sensing applications, photodynamic therapy and other applications.

- Superior performance and fiber optic properties from UV to NIR
- Available as UV or VIS/NIR fiber (HUV/HWF)
- Available in a wide range of core diameters and assemblies
- Tailored to your specific application needs

High NA at a low price

Wavelength

Optran® HUV/HWF 350–2200 nm

Numerical aperture (NA)

Standard	0.37 ± 0.02
High	0.48 ± 0.02
	0.52 ± 0.02
	0.57 ± 0.02

Technical data

Wavelength / spectral range	Optran® HUV, Optran® HWF: 350–2200 nm
Numerical aperture (NA)	0.37 ± 0.02 0.48 ± 0.02 0.52 ± 0.02 0.57 ± 0.02
Operating temperature	-40 to +150°C
Core diameter	Available from 100 to 2000 µm
OH content	Optran® HUV: high (> 700 ppm) Optran® HWF: low (< 1 ppm)
Standard prooftest	100 kpsi
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 30

Optran® PUV, Optran® PWF

Silica fiber with silicone cladding

Cost-effective with a high numerical aperture

Remote illumination, sensing applications, medical and other applications.

- Superior performance and fiber optic properties from UV to NIR
- Available as UV or VIS/NIR fiber (PUV/PWF)
- Available in a range of core diameters and assemblies
- Tailored to your specific application needs

High NA at a low price

Wavelength

Optran® PUV / PWF 350–2200 nm

Numerical aperture (NA)

Standard 0.40 ± 0.02

Advantages

- Cost-effective (compared to silica / silica fibers)
- High concentricity
- Step-index profile
- Biocompatible material
- Sterilizable using ETO and other methods

Technical data

Wavelength / spectral range	Optran® PUV, Optran® PWF: 350–2200 nm
Numerical aperture (NA)	0.40 ± 0.02
Operating temperature	-40 to +150°C
Core diameter	Available from 100 to 2000 µm
OH content	Optran® PUV: high (> 700 ppm) Optran® PWF: low (< 1 ppm)
Standard prooftest	100 kpsi
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 30

Optran® WFGE

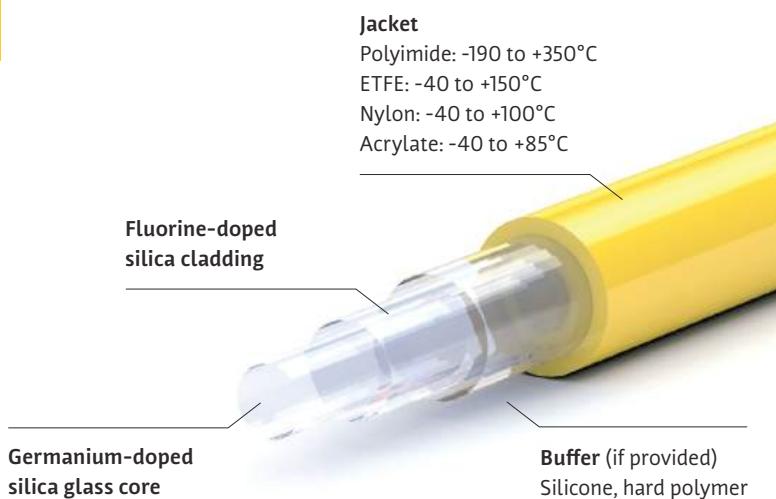
All-silica GeO₂ doped

Maximum numerical aperture, unmatched performance, and a broad spectral range

Spectroscopy, laser technology, research, sensing, illumination, photodynamic therapy, and many other applications.

- Superior performance and fiber optic properties from VIS to NIR >2000nm
- Available in a range of core diameters and assemblies
- Tailored to your specific application needs

High NA for demanding applications

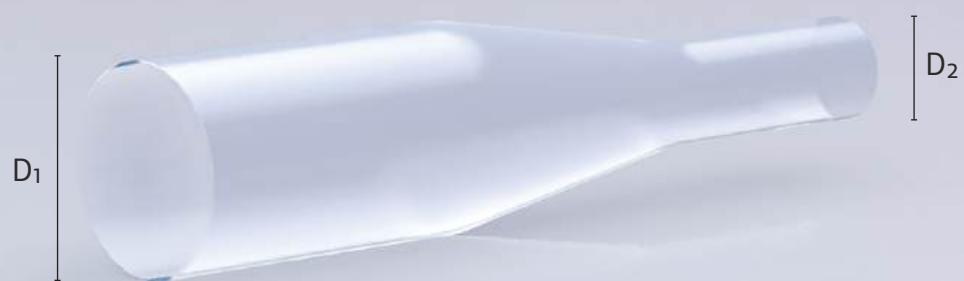

Wavelength

Optran® WFGE 400–2400 nm

Numerical aperture (NA)

Standard 0.37 ± 0.02

Higher NA on request


Technical data

Wavelength / spectral range	Optran® WFGE: 400–2400 nm
Numerical aperture (NA)	0.37 ± 0.02
Operating temperature	-190 to +350°C
Core diameter	Available from 50 to 1000 µm
Standard core / cladding ratios	1:1.04 1:1.06 1:1.1 1:1.15 1:1.2 1:1.25 1:1.4 or customized
Standard prooftest	100 kpsi (nylon, ETFE, acrylate jacket) 70 kpsi (polyimide jacket)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress) 150 × core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 29

Fiber taper products

Optran® UV, WF, WFGE

CeramOptec®'s fused tapered fibers can be deployed from the deep UV to the NIR range. Taper products are required where input and output diameters differ. CeramOptec® offers a wide range of options, including for special applications.

Formula

A tapered optical fiber acts as a beam diameter and numerical aperture converter, with the input beam being converted according to the following formula:

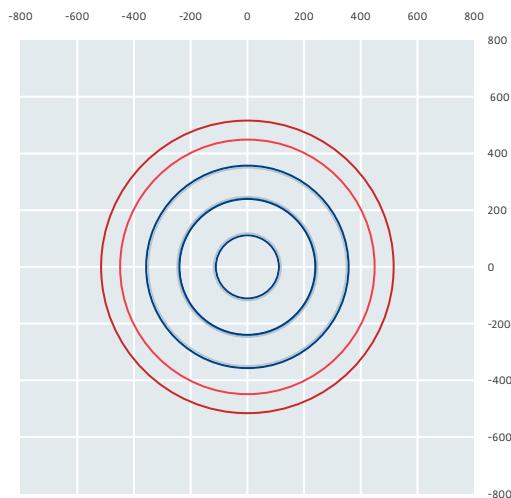
$$\text{NA}_2: = \frac{D_1}{D_2} \text{ NA}_1$$

NA₁: Input NA | NA₂: Output NA

D₁: Input diameter | D₂: Output diameter

The output NA is limited by the NA of the fiber used, which may result in a loss of light.

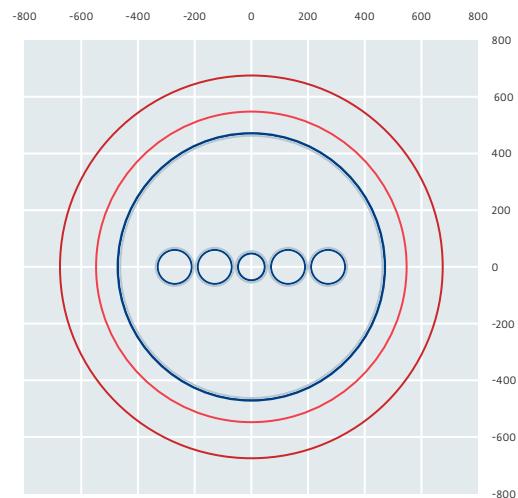
Technical data


Available fibers	Optran® UV Optran® WF Optran® WFGE
Wavelength	From deep UV to NIR
Core diameter	50 to 1500 µm
Standard taper ratios	2:1 3:1 4:1 5:1 or customized
Standard prooftest	100 kpsi
Minimum bending radius	5–100 mm (depending on the selected fiber diameter)

Multi-Core Optical Fiber

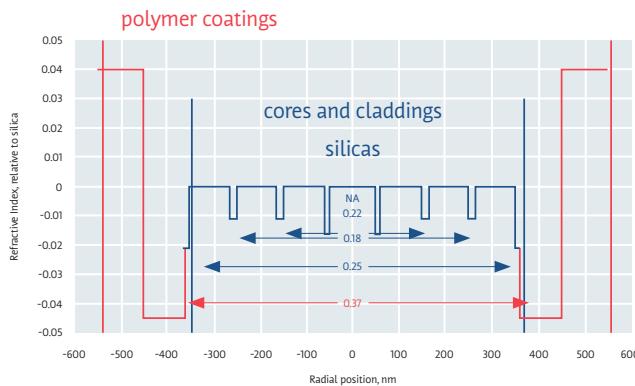
Silica fibers – concentric or individual cores

Multi-Core Fiber Optics open a range of capabilities for applications in sensing, laser delivery and more. CeramOptec® offers Concentric Core and Separated Core fiber options, fully customizable to meet your needs.


Fiber Cross-Section / μm

Concentric Core Fiber

Advantages: Great for Power Density Control


Fiber Cross-Section / μm

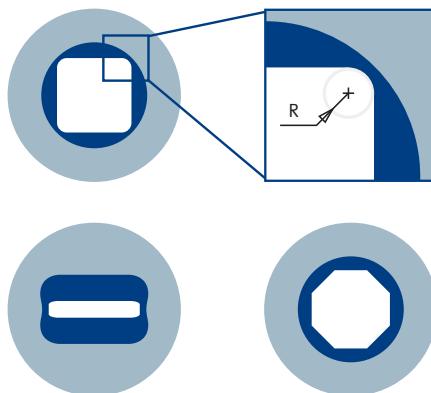
Separated Core Fiber (under development)

Ceram Optec® can produce separated core fibers upon customer request.

Advantages: Ideal for beam shaping

Technical data

Our multi-core fibers are fully customizable. Please contact us for more information.


Optran® UVNCC, Optran® WFNCC

All-silica with non circular cores

These fibers are ideal for laser applications, where the shape and homogeneity of the output beam is decisive. CeramOptec® offers rectangular core fibers with aspect ratios of up to 1:6 and regular polygon core fibers with 4 to 8 side faces as a standard product.

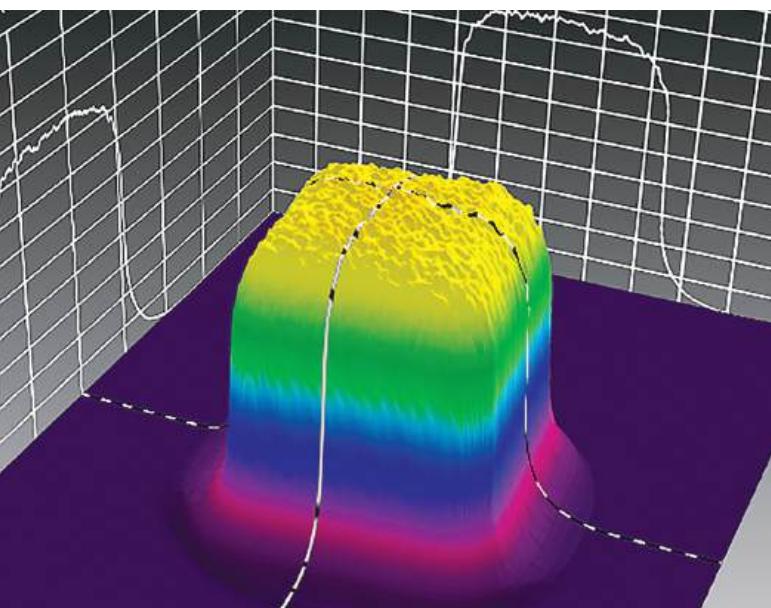
Corner radii

The corner radius for rectangular shapes (r_4) is described as the ratio between the radius of a circle inscribed in the corner of the rectangle and the diameter of a circle inscribed within the rectangle itself (D_{in}). (See drawing below) Three types of standard radii are available for a square shape: $r_4 < 10\%$, $10\% < r_4 < 20\%$, $r_4 > 20\%$.

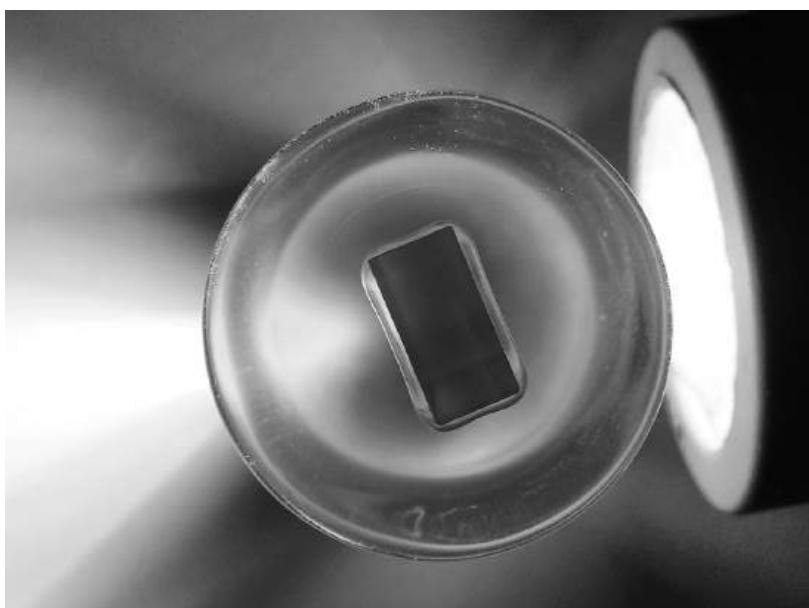
$$r_4 = R/D_{in} * 100\%$$

Wavelength

Optran® UVNCC	190–1200 nm
Optran® WFNCC	300–2400 nm


Numerical aperture (NA)

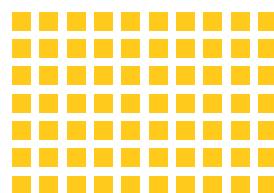
Low	0.16 ± 0.02
Standard	0.22 ± 0.02
High	0.28 ± 0.02


Corner sharpness for regular polygons with a number of sides > 4 defined by the ratio between the diameters of circumscribed and inscribed circles.

Technical data

Wavelength / spectral range	Optran® UVNCC: 190–1200 nm Optran® WFNCC: 300–2400 nm
Numerical aperture (NA)	0.16 ± 0.02 0.22 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-190 to +350°C
Core diameter	Geometries and diameters upon request
OH content	Optran® UVNCC: high (> 700 ppm) Optran® WFNCC: low (< 1 ppm) Fibers with OH content < 0.25
Standard prooftest	100 kpsi (nylon, ETFE, acrylate cladding) 70 kpsi (polyimide cladding)
Minimum bending radius	50 \times cladding diameter (short-term mechanical stress) 150 \times core diameter (during use with high laser power)
Attenuation values	in relation to wavelength: see p. 29

Fibers with a rectangular core geometry homogenize the intensity distribution. The image shows the intensity distribution on the focal level, using NCC fibers with core diameter of $800 \times 800 \mu\text{m}$.

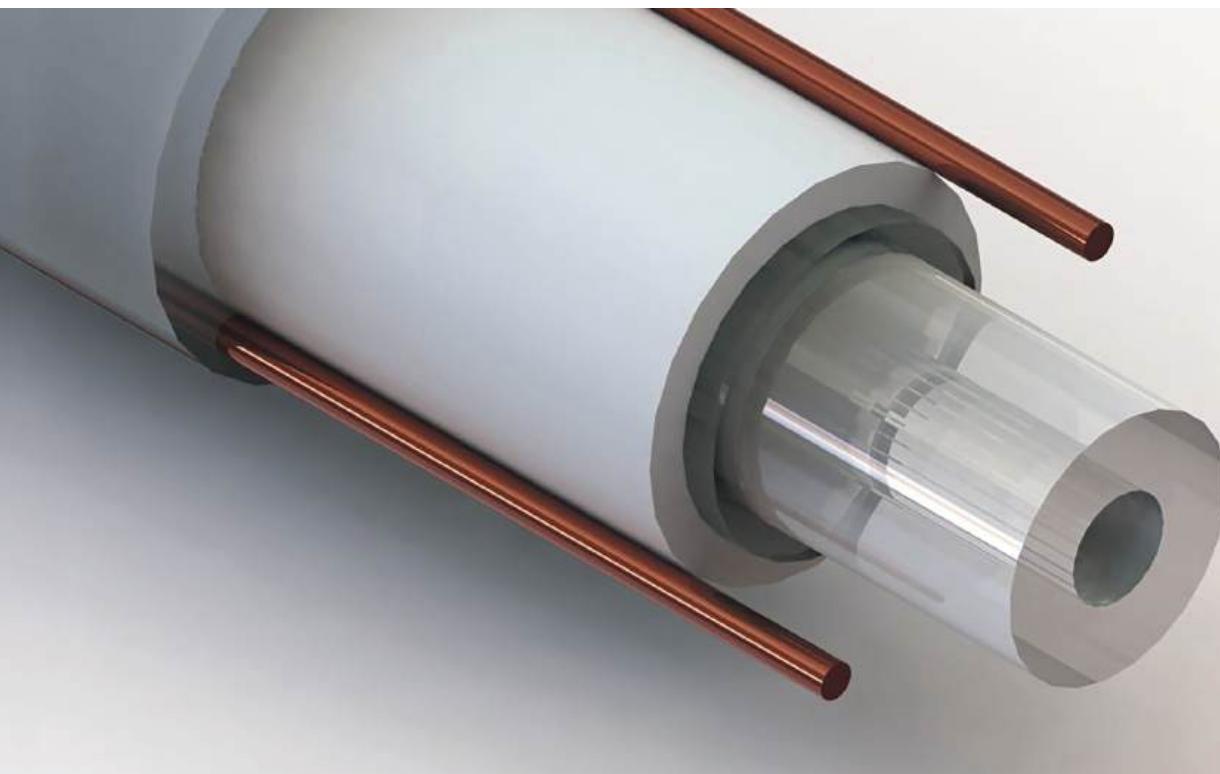

Fiber with rectangular core geometry.

Applications

First choice for applications for beam shaping e.g. including surface treatment or for lighting.

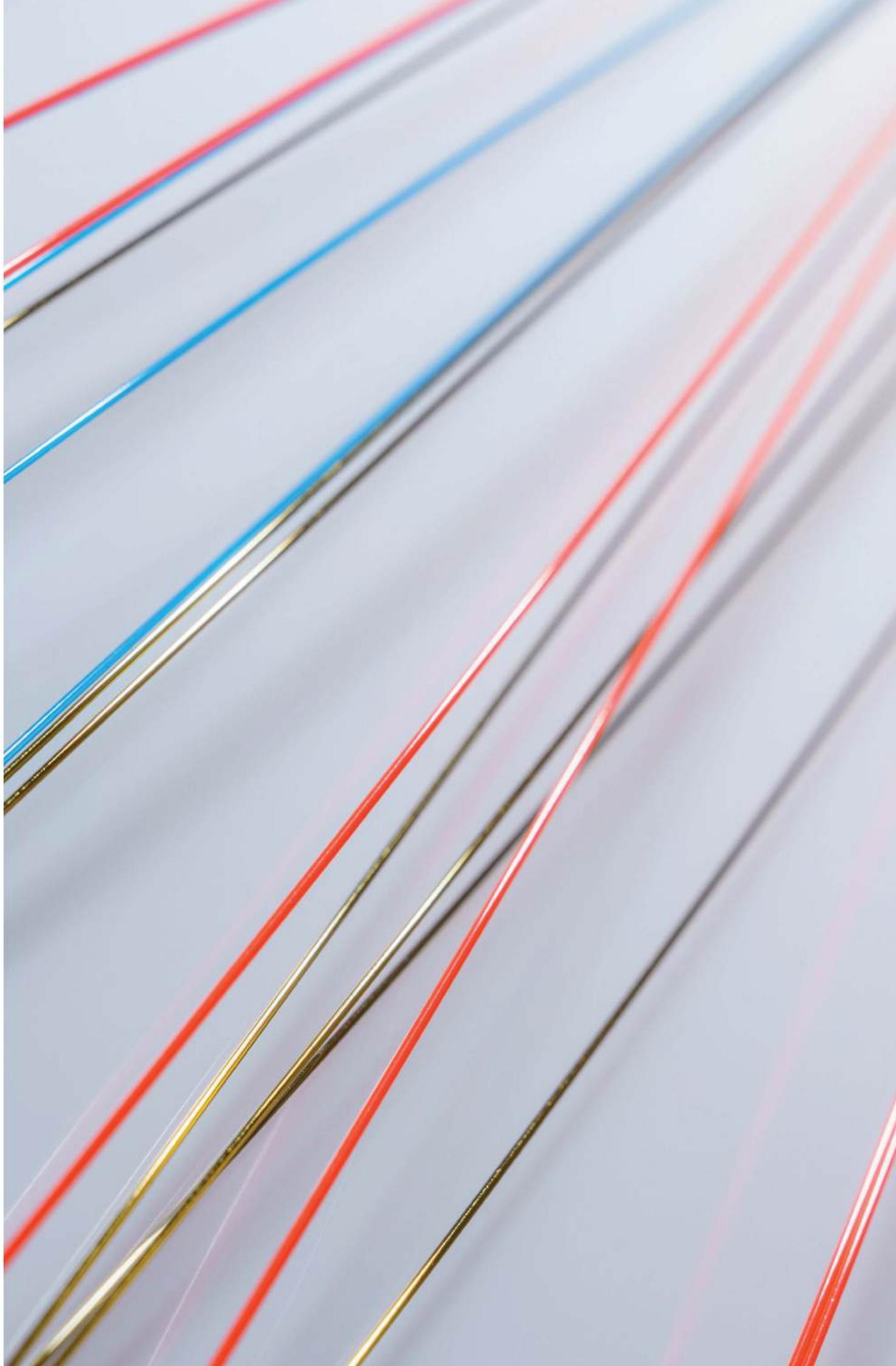
Pure fused silica/F-doped fused silica square and rectangular shaped fibers

Fibers which deviate from the traditional round form with a square or rectangular shape offers advantages due to providing maximum packing density for input and output. These fibers are very suitable for connections to angular sources and receivers. The angular shaped core provides consistent short-distance homogenization input power distribution. Our angular fibers are also available in rectangular shapes with large side ratios and a small corner radius, thanks to our special PCVD-technology.



Large NCC's are ideal for applications which require a combination of flexibility and large cross sections in silica fibers, e.g. a diode laser delivery system.

Safety Fiber


More safety for users of fiber-coupled high-performance lasers

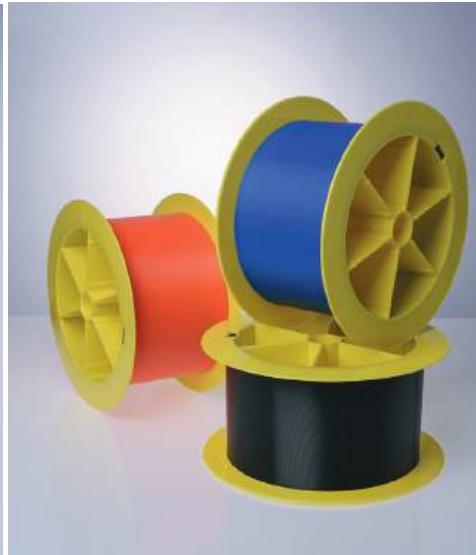
Copper wire conductors with a jacket facilitate the design of active protective devices

A new fiber design from CeramOptec® increases user safety in connection with fiber-coupled high-performance lasers. Copper wires in a polyamide jacket support the configuration of active protective devices that interrupt the laser circuit in the event of fiber breakage or connection problems and protect the user from leaking radiation.

Since the two copper wires are applied together with the polyamide sheathing after the fiber drawing process, the new fiber concept can be implemented for all standardized CeramOptec® glass fibers. All-rounders such as the standard Optran® UV/WF fibers are also available as safety fibers, as are the homogenizing Optran® NCC fibers with polygonal core geometry. For optimum coverage of all bending radii and temperature zones, safety fibers are available with copper wire conductors of 50, 100 and 150 micrometers. Custom configurations are also available on request.

Jackets for Silica Fiber

Each application requires its own jacket


Fiber jackets protect the fiber, give stability and ensure robustness. Depending on the application, the fiber must be able to withstand high temperatures, be biocompatible or highly visible.

Available Jackets

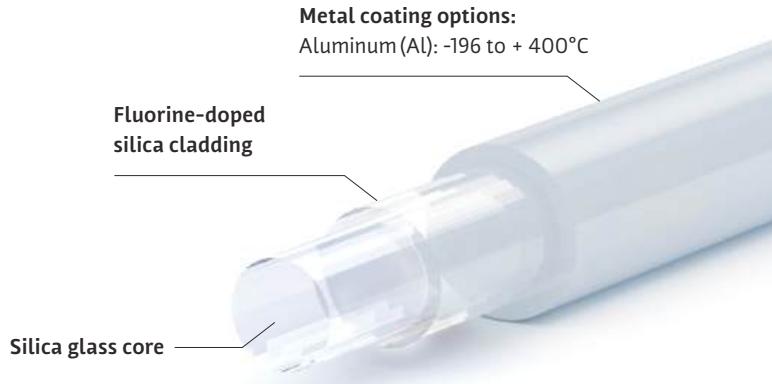
- Polyimide: -190 to +350°C
- ETFE: -40 to +150°C
- PTFE: -40 to +260 °C
- Nylon: -40 to +100°C
- Acrylate: -40 to +85°C

Options

- Abrasion-resistant marking
- Biocompatible materials
- Custom colors available

Metal Coated Silica Fibers

All-silica with metal coating


Metal coated silica fibers can withstand the highest temperatures of any fiber and are suitable for harsh environments. Aluminum as a standard. Other materials on request.

Wavelength

Optran® UV	190–1200 nm
Optran® WF	300–2400 nm

Numerical aperture (NA)

Low	0.12 ± 0.02 0.15 ± 0.02
Standard	0.22 ± 0.02
High	0.26 ± 0.02 0.28 ± 0.02

Advantages

- High temperature resistance
- High chemical resistance
- Solderable
- Hermetically sealed only for Aluminum

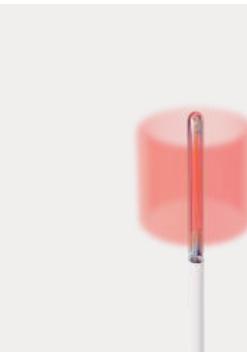
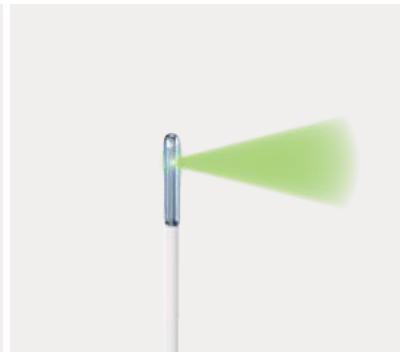
Technical data

Wavelength / spectral range	Optran® UV: 190–1200 nm Optran® WF: 300–2400 nm
Numerical aperture (NA)	0.12 ± 0.02 0.15 ± 0.02 0.22 ± 0.02 0.26 ± 0.02 0.28 ± 0.02 or customized
Operating temperature	-196 °C to +400 °C
Silica diameter	Available from 100 to 2100 µm
Tensile strength (short gauge), GPa	Aluminum: 3.5 to 6
Two point bending strength, GPa	Aluminum: >10
Static fatigue parameter, n	Aluminum: >100
Minimum bending radius	100 × diameter (short-term mechanical stress) 200 × diameter (during use with high laser power)

Fiber probes

Customized medical fibers

CeramOptec® offers customized medical fibers and probes for every application and laser type, tailored to your specific requirements. Our solutions match highest quality standards and make them the first choice for modern medical laser treatment.



Our certified probes and fibers are suitable for a wide range of applications, from Aesthetics, ENT, and Gynecology to Phlebology, Proctology and Urology.

Available standard fiber types

- One-Ring fiber
- Bare fiber / Holmium fiber
- Side fiber
- Diffusor fiber
- and many more on request

Options

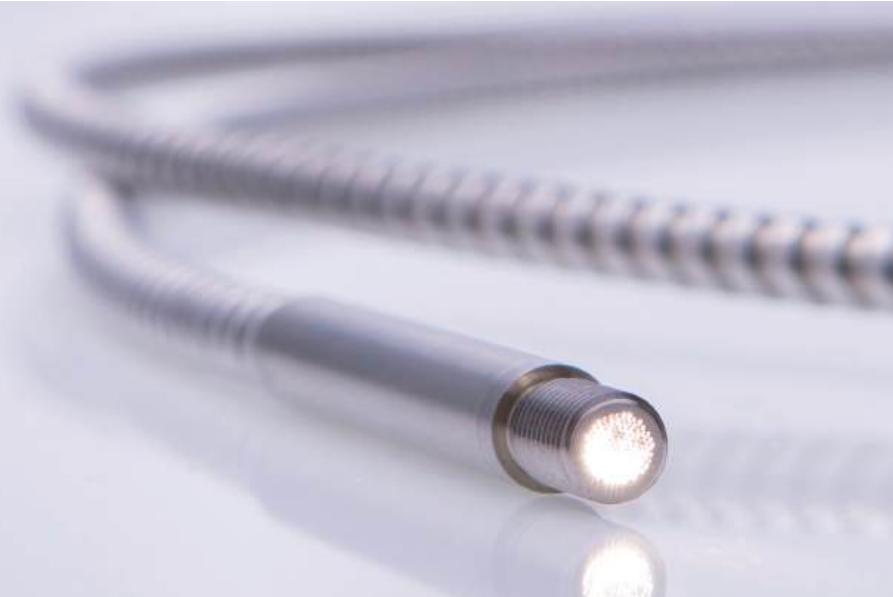
- ISO certified sterilization process
- Abrasion resistant marking Fused
- and glued capillaries

Fiber cables

Single-fiber assemblies

CeramOptec® offers a comprehensive range of cables and high-power cables tailored to your specific application needs. As we maintain complete control over the entire process, from preform manufacturing to the finished product, we are able to supply cables that meet the most demanding requirements regarding quality and fiber optic properties.

Advantages


- Broad temperature range
- High resistance against laser damage
- Special jackets available for high temperatures, high vacuum and harsh chemicals
- All dielectric, non-magnetic design
- Various lengths available

Options

Available fibers	All fibers from our range
Connectors	SMA FC/PC ST and others upon customer request, including ferrules
Protection tubes	PVC PTFE Kevlar C-Flex Kevlar-reinforced PVC Metal Steel and others
Cable variation	AR coating possible

Fiber bundles

Multi-fiber assemblies

CeramOptec®'s fiber bundles are designed for superior quality and optimum fiber optic properties. We optimize your bundles for various parameters, including NA and packing efficiency. Our fiber assemblies can be flexibly configured and tailored precisely to your application needs.

Options

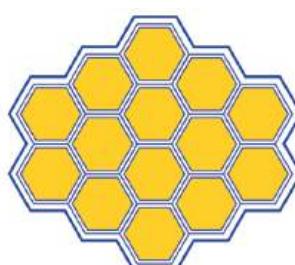
Available fibers	All fibers from our range
Active bundle surface geometries	Circular Semi-circular Square Rectangular Line Ring Segmented ring
Bundle design	Single-branch Dual-branch Multi-branch
Bundle variant	Glued Fused Sorted AR coated
Connectors	SMA FC/PC ST and others upon customer request

Fiber bundles

Fused-end bundles

CeramOptec®'s fused-end bundles set the benchmark for consistently high long-term performance. The fusing process completely eliminates inter-fiber spaces and thus positions CeramOptec®'s fused-end bundles among the most sophisticated fiber bundles on the market. As the bundles do not rely on adhesive, they are resistant to temperatures of more than +600°C, making them the first choice for demanding applications!

Wavelength


Fused-end bundles 190–2400 nm

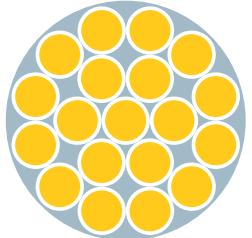
Numerical aperture (NA)

Low	0.12 ± 0.02
Standard	0.22 ± 0.02
High	0.37 ± 0.02

Advantages

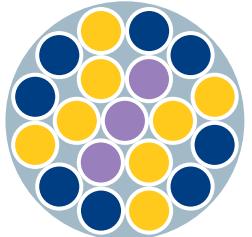
- High transmission
- No inter-fiber spaces
- Large active diameter
- Wide range of ready-to-use assemblies available
- Long service life
- Even distribution in multi-branch bundles
- High temperature resistance above +600°C

Bundles made from end-fused fibers show no gaps between individual fibers, since the fibers attain a hexagonal shape during the fusing process.


Fiber bundles

Overview

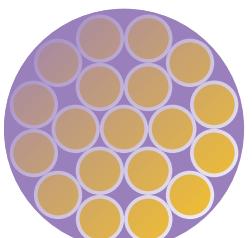
Gluing


Glued fiber bundles offer the greatest flexibility in terms of achievable diameters and geometries.

Sorting

Sorted fibers allow an even power distribution across several bundle arms and can increase the measuring precision thanks to spatial mapping of the fibers.

Fusion


In bundles of fused fibers all gaps between the fibers are eliminated, delivering an increase in the filling factor and thus transmission by up to 20%.

AR coating

An AR coating almost completely eliminates reflection losses at the fiber ends, which can increase transmission by about 7%.

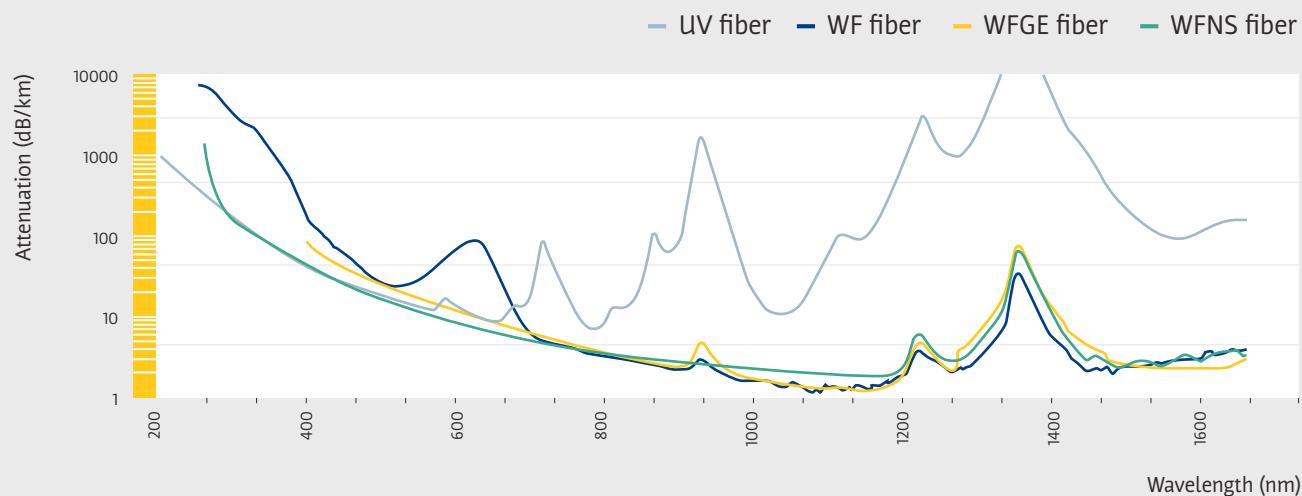
Our glossary

We have explained some important concepts of fiber optics below.

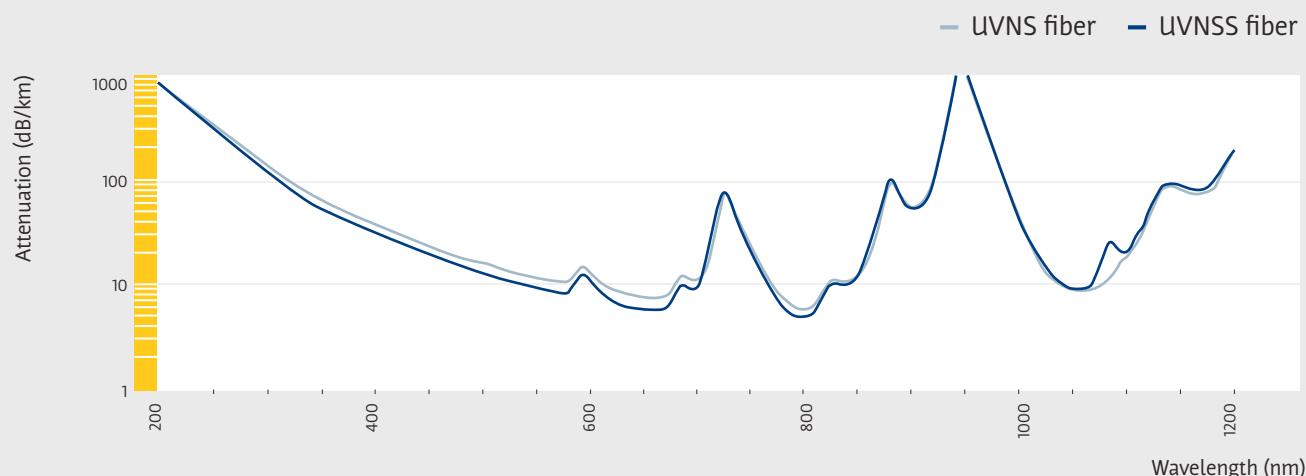
Please do not hesitate to contact us if you have any questions.

Fiber optics	The branch of optical technology concerned with the transmission of radiant power through fibers made of transparent materials such as glass, fused silica or plastic.
Optical fiber	(Also optical waveguide, fiber optic cable, optical cable) – a thin filament of drawn or extruded glass or plastic having a central core and a cladding of lower-index material to promote internal reflection.
Fiber bundle	A rigid or flexible, concentrated assembly of glass or plastic fibers used to transmit light.
Core	The light conducting portion of an optical fiber. It has a higher refractive index than the cladding.
Cladding	Low refractive index material that surrounds the core of an optical fiber. It contains the core light while protecting against surface scattering. The cladding can consist of fused silica, plastic or specialty materials.
Numerical aperture (NA)	In fiber optics, the NA describes the range of angles at which light can enter and exit the system. NA is an important parameter in applied fiber optics.
Ultraviolet spectrum	The invisible region of the spectrum beyond the violet end of the visible region. Wavelengths range from 10 to 400 nm.
Visible spectrum	The region of the electromagnetic spectrum to which the retina is sensitive and by which the eye sees. It extends from about 400 to 700 nm in wavelength.
Infrared spectrum	Region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1000 nm.
Attenuation	The phenomenon of the loss of average optical power in an optical fiber or medium.
Bend loss	Loss of power in an optical fiber due to bending of the fiber. Usually caused by exceeding the critical angle required for total internal reflection by internal light paths.
Transmission	In optics, the conduction of radiant energy through a medium. Often denotes the percentage of energy passing through an element or system relative to the amount that entered.

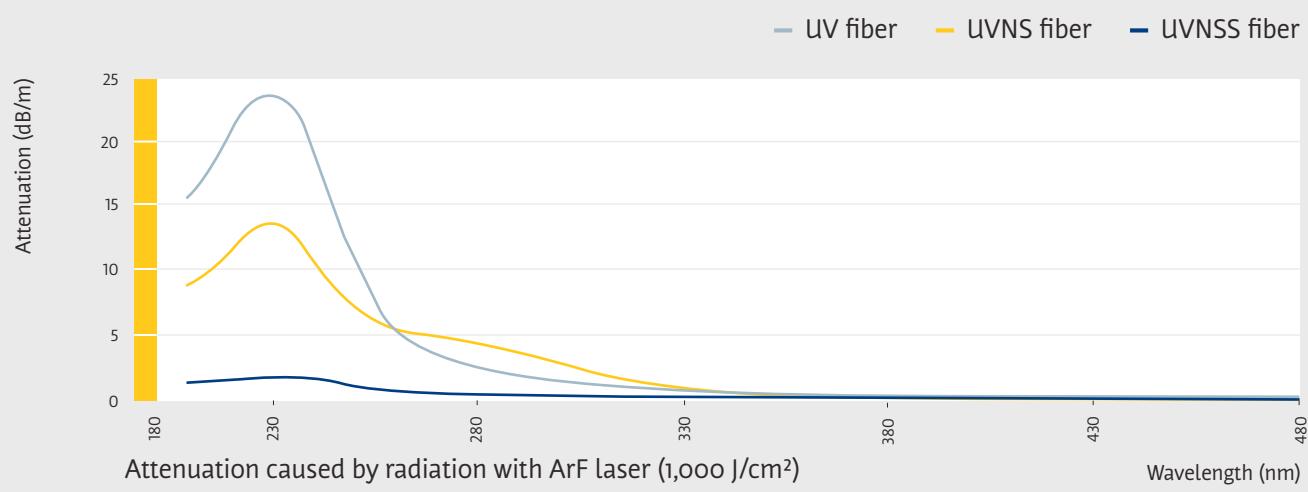
1 2 3 4 5 6 7 8 9

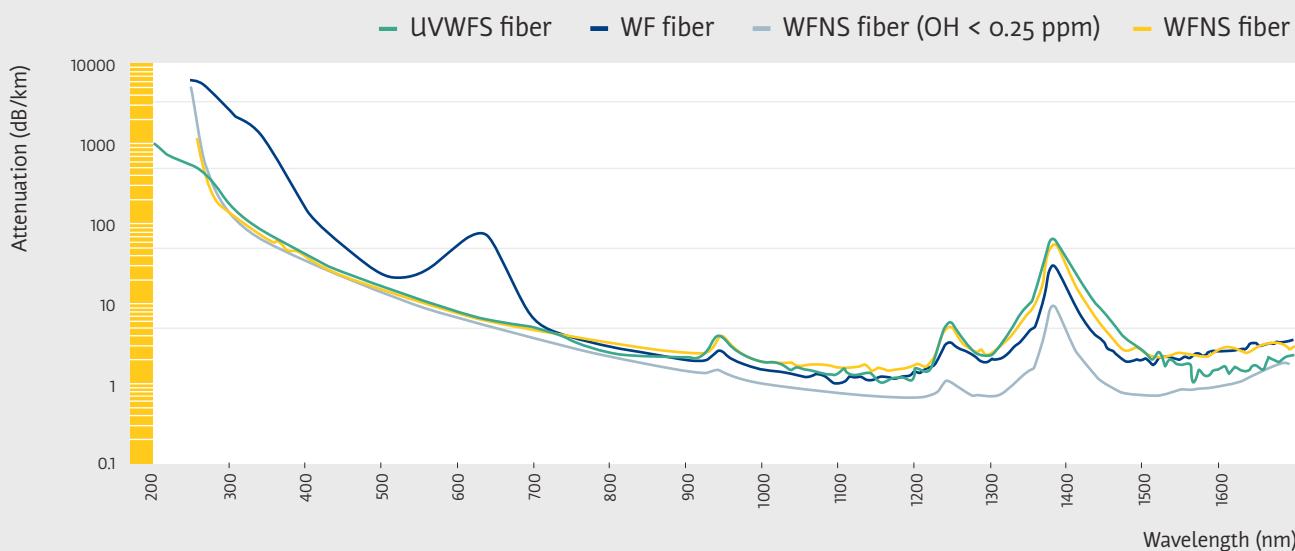

Product code key using the example of **WF NS (HEX) 400/480 /1050 (H) (B)N NA=0.26**

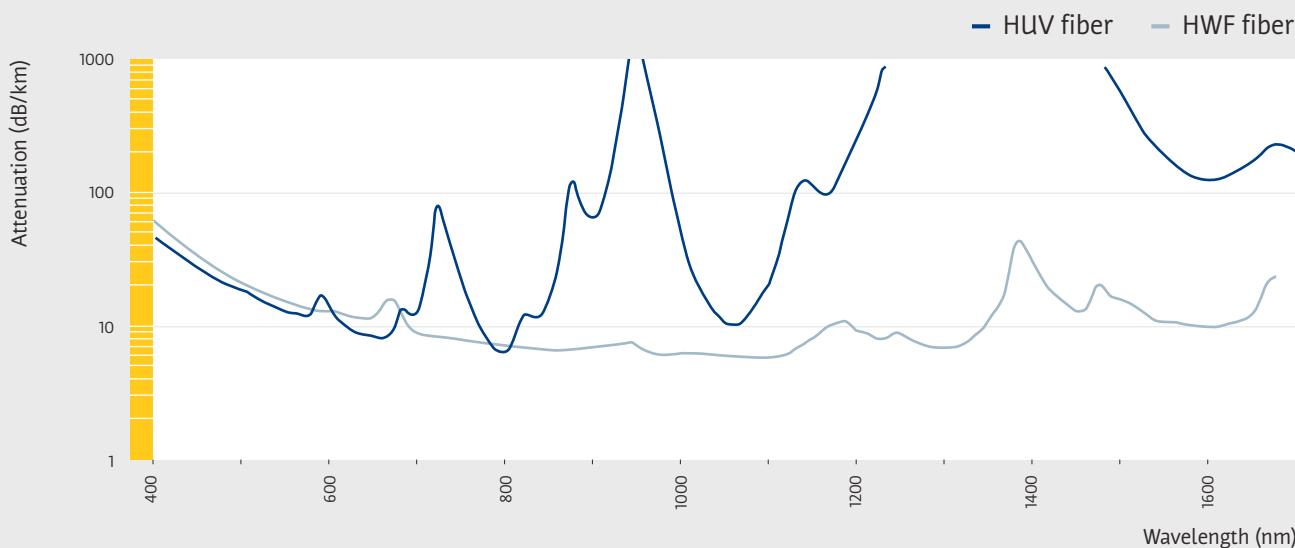
1 Fiber type	UV = Optran® UV WF = Optran® WF UVNSS = Optran® UVNSS NCC = Optran® NCC HUV = Optran® HUV HWF = Optran® HWF WFGE = Optran® WFGE UVNS = Optran® UVNS WFNS = Optran® WFNS UVWFS = Optran® UVWFS
2 Core shape (optional)	RCT = rectangle PEN = pentagonal HEX = hexagonal
3 Core size µm	Circular = core diameter PEN, HEX, HEP, OCT = inscribed circle diameter RCT = side 1 x side 2
4 Cladding size µm	Circular = cladding diameter RCT = cladding side 1 x side 2
5 Final fiber diameter, µm	
6 Buffer (optional)	H = hard polymer buffer S = silicone buffer No information = no buffer
7 Color (optional)	B = black BL = blue W = white Y = yellow R = red G = green No information = transparent
8 Jacket material	A = acrylate jacket (no buffer) N = nylon jacket (silicone or hard polymer jacket) T = ETFE jacket (silicone or hard polymer buffer) P = polyimide jacket (no buffer)
9 NA core to cladding	Standard 0.1 to 0.26 for WF and UV 0.12 to 0.29 for WFNS 0.15 to 0.29 for UVNS 0.37 for WFGE 0.37 to 0.57 for HUV and HWF 0.32 for PUV and PWF

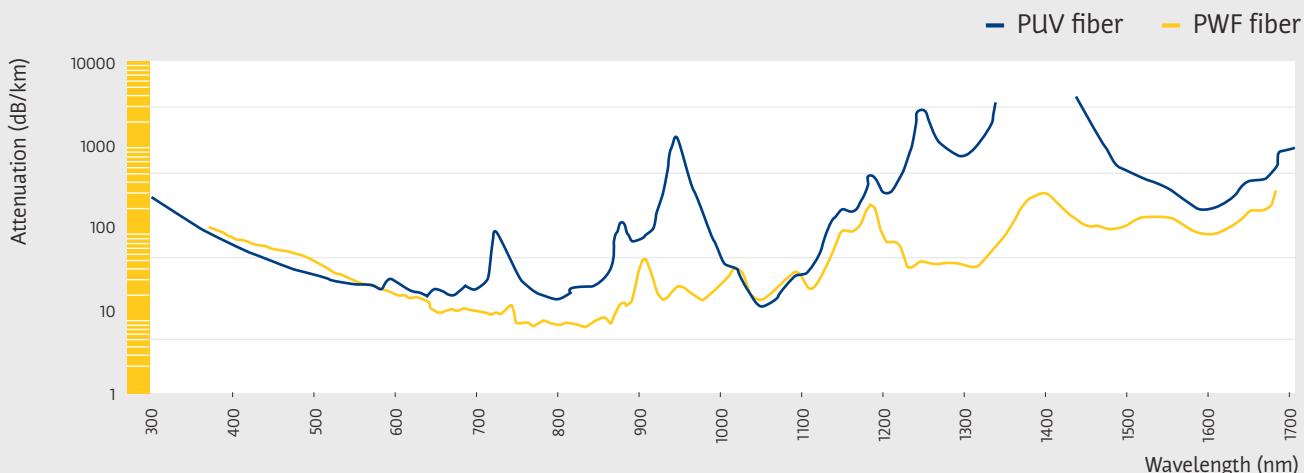

At a glance

Comparison of attenuation values

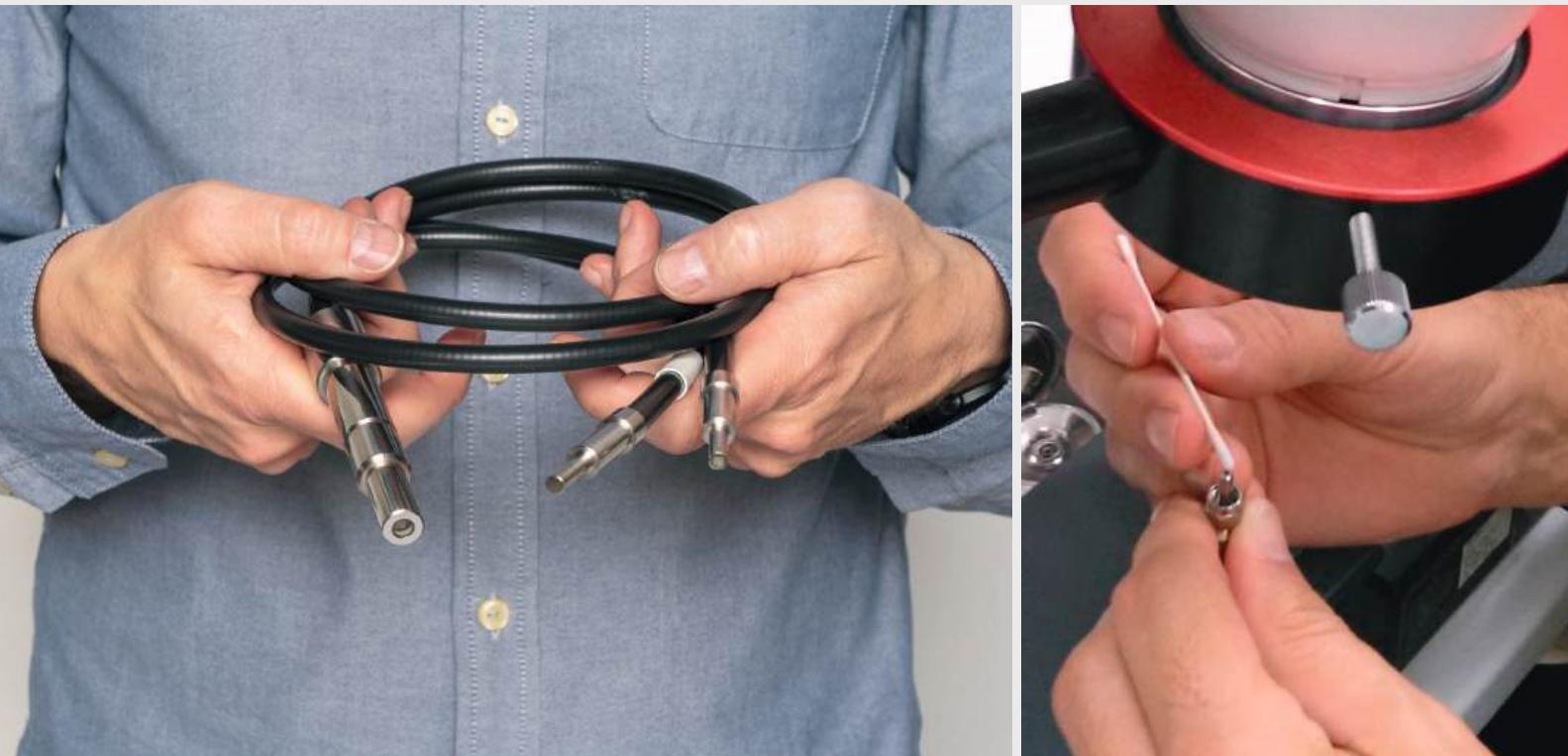

Optran® UV, WF, WFGE, WFNS


Optran® UVNS, UVNSS


Optran® UVNSS (Comparison of solarization resistance)


Optran® UVWFS broadband fiber

Optran® HUV, Optran® HWF



Optran® PUV, Optran® PWF

Instructions for use

Fibers, fiber cables, fiber bundles

Please note the following information to ensure the long-term safe use of your fiber products:

Safety

1. The NA of the laser beam must be smaller than the NA of the fiber.
2. The laser beam must be directed towards the core diameter or fused bundle, as connectors or adhesive between the bundles may otherwise overheat.
3. It is recommended to have the laser energy distributed evenly (instead of a Gaussian distribution).

Application

1. Clean the fiber endface before switching on the laser.
2. Ensure that the ferrule and receptacle are entirely free from any contamination, as contaminants may burn in.
3. The cable/bundle surface may be cleaned with isopropyl alcohol, ideally under a microscope using a cotton bud.
4. Ensure that the optical axes are correctly aligned and not at an angle to each other, and that the focal point is correctly aligned. It is recommended to verify the alignment using a He-Ne laser.
5. Ensure that the minimum bending radius is complied with to prevent fiber breakage.

CeramOptec worldwide

www.ceramoptec.com

Locations

CeramOptec SIA
Domes iela 1a
5316 Livani
Latvia
Tel. +371 (0)65343646
sales@ceramoptec.com

CeramOptec GmbH
Brühler Str. 30
53119 Bonn
Germany
Tel. +49 (0)228 979670
sales@ceramoptec.com

CeramOptec / Biolitec
100 York Blvd., Suite 240
Richmond Hill, ON L4B 1J8
Canada
Tel. +1 (0)437 914 9233
sales@ceramoptec.com

biolitec laser science and technology
Shanghai Ltd.
Unit 302-3, Tower 1, No. 38, De Bao Road,
Shanghai China, 200131
Tel. +86 (0)21 6308 8856
sales@ceramoptec.com

Distributors

Italy
Acal BFi Italy srl
20057 Assago (MI)
Tel. +39 02 53 5831
info-it@acalbfi.it
www.acalbfi.it

France
OBS FIBER
Villebon sur Yvette
Tel. +33 (0)1 609 241 22
jcorceiro@obs-fiber.fr
www.obs-fiber.fr

Israel
LAS Photonics Ltd.
Ra'anana
Tel. +972 (0)3 632 6377
info@lasphotonics.com
www.lasphotonics.com

India
New Age Instruments & Materials (P) Ltd.
Haryana
Tel. +91 (0)124 408 651 314
tapani@newagein.com
www.newagein.com

Japan
T.E.M. Incorporated
Tokyo
Tel. +81 (0)3 525 620 52
fiber@tem-inc.co.jp
www.tem-inc.co.jp

Japan
Kantum Ushikata Co. Ltd.
Yokohama
Tel. +81 (0)45 345 0001
info@kantum.co.jp
www.kantum.co.jp

Korea
Unitech International Corp.
Seoul
Tel. +82 (0)2 585 6188
esala@naver.com
www.naver.com

Korea
MJL CRYSTEK. INC
Daejeon
Tel. +82 (0)42 471 8070
bmws@mjlinc.com
www.mjlinc.com